А вот и ответы на три вопроса с собеседований, которые мы недавно вам задавали!
1️⃣Как оценить статистическую значимость анализа?
Для оценки статистической значимости нужно провести проверку гипотезы. Сначала определяют нулевую и альтернативную гипотезы. Затем рассчитывают p – вероятность получения наблюдаемых результатов, если нулевая гипотеза верна. Наконец, устанавливают уровень значимости alpha. Если p < alpha, нулевая гипотеза отвергается – иными словами, анализ является статистически значимым.
2️⃣ Приведите три примера распределений с длинным хвостом. Почему они важны в задачах классификации и регрессии?
Три практических примера: степенной закон, закон Парето и продажи продуктов (например, продукты-бестселлеры против обычных).
При решении задач классификации и регрессии важно не забывать о распределении с длинным хвостом, поскольку редко встречающиеся значения составляют существенную часть выборки. Это влияет на выбор метода обработки выбросов. Кроме того, некоторые методики машинного обучения предполагают, что данные распределены нормально.
3️⃣ Что такое центральная предельная теорема, и почему она важна?
Центральная предельная теорема (ЦПТ) говорит о том, что сумма достаточно большого количества слабо зависимых случайных величин с примерно одинаковыми масштабами имеет распределение, близкое к нормальному.
Центральная предельная теорема важна, поскольку она используется при проверке гипотез и расчете доверительных интервалов.
А вот и ответы на три вопроса с собеседований, которые мы недавно вам задавали!
1️⃣Как оценить статистическую значимость анализа?
Для оценки статистической значимости нужно провести проверку гипотезы. Сначала определяют нулевую и альтернативную гипотезы. Затем рассчитывают p – вероятность получения наблюдаемых результатов, если нулевая гипотеза верна. Наконец, устанавливают уровень значимости alpha. Если p < alpha, нулевая гипотеза отвергается – иными словами, анализ является статистически значимым.
2️⃣ Приведите три примера распределений с длинным хвостом. Почему они важны в задачах классификации и регрессии?
Три практических примера: степенной закон, закон Парето и продажи продуктов (например, продукты-бестселлеры против обычных).
При решении задач классификации и регрессии важно не забывать о распределении с длинным хвостом, поскольку редко встречающиеся значения составляют существенную часть выборки. Это влияет на выбор метода обработки выбросов. Кроме того, некоторые методики машинного обучения предполагают, что данные распределены нормально.
3️⃣ Что такое центральная предельная теорема, и почему она важна?
Центральная предельная теорема (ЦПТ) говорит о том, что сумма достаточно большого количества слабо зависимых случайных величин с примерно одинаковыми масштабами имеет распределение, близкое к нормальному.
Центральная предельная теорема важна, поскольку она используется при проверке гипотез и расчете доверительных интервалов.
Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from fr